Level 3 - Expert -

Aufgabe A1

Bestimme die 1. und 2. Ableitung der gegebenen Funktionen.

a)
$$s(t) = -\frac{6}{5}t^3 + \frac{3}{2}t + \frac{2}{5}$$
 b) $f(x) = x^2(x - \frac{2}{3}x^3)$ c) $f_t(x) = x^{3-t} + tx^2$; $t \in \mathbb{R}$ d) $f_a(x) = \frac{a}{4}x^2 + \frac{1}{a}x^3$ e) $f(x) = \frac{1}{\frac{1}{x^3}}$ f) $f(x) = -\frac{1}{(x+1)^2}$ g) $f(x) = \sqrt[3]{x^2} + \sqrt[4]{x^3}$ h) $f(x) = \frac{1}{x^{-0.5}}$ i) $f_a(z) = \frac{a^2}{\sqrt{2z}}$

b)
$$f(x) = x^2(x - \frac{2}{3}x^3)$$

c)
$$f_t(x) = x^{3-t} + tx^2$$
; $t \in \mathbb{R}$

d)
$$f_a(x) = \frac{a}{4}x^2 + \frac{1}{a}x^3$$

e)
$$f(x) = \frac{1}{x^{\frac{1}{3}}}$$

f)
$$f(x) = -\frac{1}{(x+1)^2}$$

g)
$$f(x) = \sqrt[3]{x^2} + \sqrt[4]{x^3}$$

h)
$$f(x) = \frac{1}{x^{-0.5}}$$

$$i) f_a(z) = \frac{a^2}{\sqrt{2z}}$$

Aufgabe A2

Berechne die Steigung des Graphen K_f der Funktion f an der Stelle $x_0 = 1$ und im Schnittpunkt von K_f mit der y-Achse.

a)
$$f(x) = -\frac{1}{\sqrt{x+3}} + x + 3$$

b)
$$f(x) = \frac{1}{4}(x-2) - \frac{1}{(x-2)^3}$$

c)
$$f(x) = 3(x-5)^2 + 4$$

$$f(x) = -\frac{1}{\sqrt{x+3}} + x + 3$$
 b)
$$f(x) = \frac{1}{4}(x-2) - \frac{1}{(x-2)^3}$$

$$f(x) = 3(x-5)^2 + 4$$
 d)
$$f(x) = \frac{1}{(x+5)} - \frac{1}{(x+5)^2} + 1,84$$

Aufgabe A3

Gegeben ist die Funktion f mit $f(x) = -\frac{16}{x^2} + x$; $x \in \mathbb{R} \setminus \{0\}$. Bestimme die Punkte des Graphen K von f, in denen die Tangenten an K parallel zur Geraden y=2xsind.

Aufgabe A4

Gibt es für die Funktionen f mit $f(x) = x^2 + 3$; g mit $g(x) = x^3$ und h mit h(x) = 2x + 6 jeweils eine Stelle mit gleicher Ableitung?

Aufgabe A5

Ein Körper fällt ohne Luftreibung so, dass er in der Zeit t (in s) den Weg $s(t) = 5t^2$ (s(t) in m) zurücklegt. Nach welcher Zeit hat der Körper die Geschwindigkeit 10 m/s?