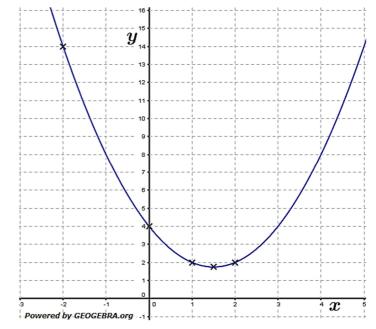
Level 1 - Grundlagen - Blatt 1

Aufgabe A1

Gegeben ist die Funktion f mit $f(x) = (x-2)^2 + x$ (siehe Grafik).

Zeichne in den Stellen x_0 Tangenten an den Graphen und bestimme mit Hilfe eines Steigungsdreiecks die momentane Änderungsrate an den

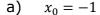
Stellen x_0 .


a)
$$x_0 = 0$$

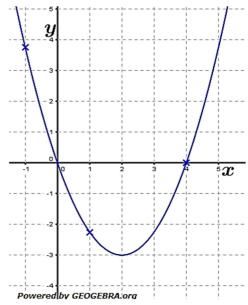
b)
$$x_0 = 1$$

c)
$$x_0 = 1.5$$

d)
$$x_0 = 2$$


e)
$$x_0 = -2$$

Bestimme auch die Funktionsgleichungen der Tangenten mit Hilfe der Punkt-Steigungs-Formel.


Aufgabe A2

Gegeben ist die Funktion f mit $f(x) = \frac{3}{4}x^2 - 3x$. Zeichne in den Stellen x_0 Tangenten an den Graphen und bestimme mit Hilfe eines Steigungsdreiecks die momentane Änderungsrate an den Stellen x_0 .

b)
$$x_0 = 1$$

c)
$$x_0 = 4$$

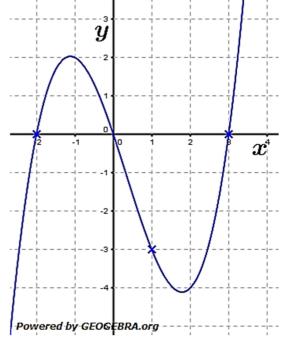
Bestimme auch die Funktionsgleichungen der Tangenten mit Hilfe der Punkt-Steigungs-Formel.

© by Fit-in-Mathe-Online, mehr als 500.000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de

Dr.-Ing. Meinolf Müller / webmaster@fit-in-mathe-online.de

Level 1 - Grundlagen - Blatt 1

Aufgabe A3

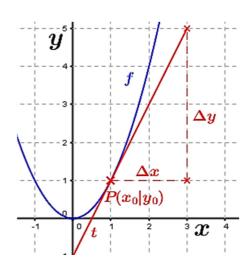

Gegeben ist die Funktion f mit $f(x) = \frac{1}{2}x^3 - \frac{1}{2}x^2 - 3x$.

Zeichne in den Stellen x_0 Tangenten an den Graphen und bestimme mit Hilfe eines Steigungsdreiecks die momentane Änderungsrate an den Stellen x_0 .

b)
$$x_0 = 1$$

c)
$$x_0 = 3$$

Bestimme auch die Funktionsgleichungen der Tangenten mit Hilfe der Punkt-Steigungs-Formel.


Lösungshinweis:

Punkt-Steigungsformel:

Ist $P(x_0|y_0)$ Punkt einer Funktion f und t die Tangente an f in P, so gilt:

$$t(x) = m \cdot (x - x_0) + y_0$$

mit $m = \frac{\Delta y}{\Delta x}$ als Steigungsdreieck.

Aufgabenblatt

zur momentanen Änderungsrate

y

Powered by GEOGEBRA.org

osungen.

 $t_2(x$

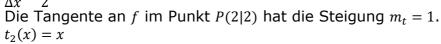
 \boldsymbol{x}

 $t_{1,5}(x)$

 $t_1(x)$

 $t_0(x)$

Level 1 - Grundlagen - Blatt 1


Lösung A1

a) $x_0 = 0$ (rotes Steigungsdreieck) $\frac{\Delta y}{\Delta x} = \frac{-3}{1} = -3$ Die Tangente an f im Punkt P(0|4) hat die Steigung $m_t = -3$.

 $t_0(x) = -3x + 4$

- b) $x_0=1$ (grünes Steigungsdreieck) $\frac{\Delta y}{\Delta x}=\frac{-2}{2}=-1$ Die Tangente an f im Punkt P(1|2) hat die Steigung $m_t=-1$. $t_1(x)=-x+3$
- c) $x_0 = 1.5$ (lila Linie) Im Punkt P(1.5|1.75) kann kein Steigungsdreieck gebildet werden, da die Steigung $m_t = 0$ ist. $t_{1.5}(x) = 1.75$

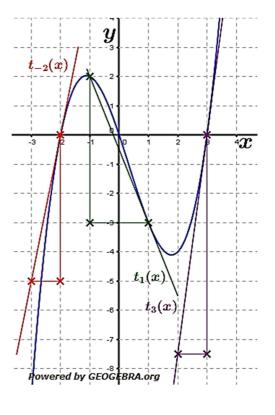
d) $x_0 = 2$ (braunes Steigungs-dreieck) $\frac{\Delta y}{\Delta x} = \frac{2}{3} = 1$

e) $x_0 = -2$ (blaues Steigungsdreieck) $\frac{\Delta y}{\Delta x} = \frac{-7}{1} = -7$ Die Tangente an f im Punkt P(-2|14) hat G

Die Tangente an f im Punkt P(-2|14) hat die Steigung $m_t=-7$. $t_{-2}(x)=-7x$

Lösung A2

- a) $x_0 = -1$ (rotes Steigungsdreieck) $\frac{\Delta y}{\Delta x} = \frac{-4.5}{1} = -4.5$ Die Tangente an f im Punkt P(-1|3.75) hat die Steigung $m_t = -4.5$. $t_{-1}(x) = -4.5x 0.75$
- b) $x_0=1$ (grünes Steigungsdreieck) $\frac{\Delta y}{\Delta x}=\frac{-1,5}{1}=-1,5$ Die Tangente an f im Punkt P(1|-2,25) hat die Steigung $m_t=-1,5$. $t_1(x)=-1,5x-0,75$
- c) $x_0 = 4$ (lila Steigungsdreieck) $\frac{\Delta y}{\Delta x} = \frac{3}{1} = 3$ Die Tangente an f im Punkt P(4|0) hat die Steigung $m_t = 3$. $t_4(x) = 3x 12$


by Fit-in-Mathe-Online, mehr als 500.000 Aufgaben für Schule und Studium www.fit-in-mathe-online.de

Dr.-Ing. Meinolf Müller / webmaster@fit-in-mathe-online.de

Level 1 – Grundlagen – Blatt 1

Lösung A3

- a) $x_0 = -2$ (rotes Steigungsdreieck) $\frac{\Delta y}{\Delta x} = \frac{5}{1} = 5$ Die Tangente an f im Punkt P(-2|0) hat die Steigung $m_t = 5$. $t_{-2}(x) = x + 10$
- b) $x_0=1$ (grünes Steigungsdreieck) $\frac{\Delta y}{\Delta x}=\frac{-5}{2}=-2.5$ Die Tangente an f im Punkt P(1|-3) hat die Steigung $m_t=-2.5$. $t_1(x)=-2.5x-0.5$
- c) $x_0 = 3$ (lila Steigungsdreieck) $\frac{\Delta y}{\Delta x} = \frac{7,5}{1} = 7,5$ Die Tangente an f im Punkt P(3|0) hat die Steigung $m_t = 7,5$. $t_3(x) = 7,5x 22,5$

